Машинное обучение с использованием Python. Сборник рецептов: практические решения от предобработки до глубокого обучения, 2 изд.
ISBN |
|
|
Количество страниц | 384 | |
Формат издания | 165 x 215 мм | |
Печать | Черно-белая |
Кайл Галлатин, Крис Элбон
Книга содержит около 200 задач машинного обучения, таких как загрузка и обработка текстовых или числовых данных, отбор модели и многие другие. Рассмотрена работа с языком Python, библиотеками pandas и scikit-learn. Коды примеров можно вставлять, объединять и адаптировать, создавая собственное приложение. Приведены рецепты решений с использованием: векторов, матриц и массивов; данных из CSV, JSON, SQL, баз данных, облачных хранилищ и других источников; обработки данных, текста, изображений, дат и времени; умень-шения размерности и методов выделения или отбора признаков; оценивания и отбора моделей; линейной и логистической регрессии, деревьев, лесов и k ближайших соседей; опорно-векторных машин (SVM), наивных байесовых классификаторов, кластеризации и нейронных сетей; сохранения и загрузки натренированных моделей.
Во втором издании все примеры обновлены, рассмотрены задачи и фреймворки глубокого обучения, расширены разделы с тензорами, нейронными сетями и библиотекой глубокого обучения PyTorch.
В книге Вы найдете рецепты для:
- векторов, матриц и массивов;
- работы с данными из CSV, JSON, SQL, базами данных, облачными хранилищами и другими источниками;
- обработки числовых и категориальных данных, текста, изображений, дат и времени;
- уменьшения размерности с использованием методов выделения или отбора признаков;
- оценивания и отбора моделей;
- сохранения и загрузки натренированных моделей.
Научитесь решать задачи с использованием:
- линейной и логистической регрессии, деревьев, лесов и k ближайших соседей;
- опорно-векторных машин (SVM), наивных байесовых классификаторов, кластеризации и нейронных сетей.
Для кого предназначена книга
Данная книга не является введением в машинное (само)обучение. Если вы не чувствуете себя уверенно в области основных понятий машинного обучения либо никогда не проводили время за изучением машинного обучения, то не покупайте эту книгу. Она предназначена для практикующих специалистов машинного обучения, которые, чувствуя себя комфортно с теорией и понятиями машинного обучения, извлекут пользу из краткого справочника, содержащего программный код для решения задач, с которыми они сталкиваются, работая ежедневно с машинным обучением.
Для кого не предназначена книга
Данная книга не должна быть вашим первым изданием по этой теме. Если вы незнакомы с такими понятиями, как перекрестная проверка, случайный лес и градиентный спуск, то вы, вероятно, не извлечете из этой книги такой же пользы, которую можно получить от одного из многих высококачественных текстов, специально предназначенных для ознакомления с этой темой. Я рекомендую прочитать одну из таких книг, а затем вернуться к этой книге, чтобы узнать рабочие, практические решения для задач машинного обучения.

Кайл Галлатин (Kyle Gallatin) — инженер-программист команды разработчиков ПО для крупнейшей торговой площадки Etsy с многолетним опытом работы в качестве аналитика данных, специалиста по данным и инженера по машинному обучению.

Крис Элбон (Chris Albon) — аналитик данных и политолог с десятилетним опытом применения статистического обучения, искусственного интеллекта и разработки программного обеспечения для политических, социальных и гуманитарных проектов — от мониторинга выборов до оказания помощи в случае стихийных бедствий. В настоящее время является ведущим аналитиком данных в компании BRCK, продвигающей интернет-технологии на африканский рынок.